MarketAlert – Real-Time Market & Crypto News, Analysis & AlertsMarketAlert – Real-Time Market & Crypto News, Analysis & Alerts
Font ResizerAa
  • Crypto News
    • Altcoins
    • Bitcoin
    • Blockchain
    • DeFi
    • Ethereum
    • NFTs
    • Press Releases
    • Latest News
  • Blockchain Technology
    • Blockchain Developments
    • Blockchain Security
    • Layer 2 Solutions
    • Smart Contracts
  • Interviews
    • Crypto Investor Interviews
    • Developer Interviews
    • Founder Interviews
    • Industry Leader Insights
  • Regulations & Policies
    • Country-Specific Regulations
    • Crypto Taxation
    • Global Regulations
    • Government Policies
  • Learn
    • Crypto for Beginners
    • DeFi Guides
    • NFT Guides
    • Staking Guides
    • Trading Strategies
  • Research & Analysis
    • Blockchain Research
    • Coin Research
    • DeFi Research
    • Market Analysis
    • Regulation Reports
Reading: Generative AI and financial crimes: a quantitative systematic literature review – Crime Science
Share
Font ResizerAa
MarketAlert – Real-Time Market & Crypto News, Analysis & AlertsMarketAlert – Real-Time Market & Crypto News, Analysis & Alerts
Search
  • Crypto News
    • Altcoins
    • Bitcoin
    • Blockchain
    • DeFi
    • Ethereum
    • NFTs
    • Press Releases
    • Latest News
  • Blockchain Technology
    • Blockchain Developments
    • Blockchain Security
    • Layer 2 Solutions
    • Smart Contracts
  • Interviews
    • Crypto Investor Interviews
    • Developer Interviews
    • Founder Interviews
    • Industry Leader Insights
  • Regulations & Policies
    • Country-Specific Regulations
    • Crypto Taxation
    • Global Regulations
    • Government Policies
  • Learn
    • Crypto for Beginners
    • DeFi Guides
    • NFT Guides
    • Staking Guides
    • Trading Strategies
  • Research & Analysis
    • Blockchain Research
    • Coin Research
    • DeFi Research
    • Market Analysis
    • Regulation Reports
Have an existing account? Sign In
Follow US
© Market Alert News. All Rights Reserved.
  • bitcoinBitcoin(BTC)$68,195.00-1.67%
  • ethereumEthereum(ETH)$1,950.51-4.48%
  • tetherTether(USDT)$1.00-0.02%
  • rippleXRP(XRP)$1.46-4.01%
  • binancecoinBNB(BNB)$611.87-2.62%
  • usd-coinUSDC(USDC)$1.000.00%
  • solanaSolana(SOL)$84.99-3.00%
  • tronTRON(TRX)$0.279883-0.55%
  • dogecoinDogecoin(DOGE)$0.101845-10.25%
  • Figure HelocFigure Heloc(FIGR_HELOC)$1.020.00%
DeFi

Generative AI and financial crimes: a quantitative systematic literature review – Crime Science

Last updated: February 15, 2026 7:15 am
Published: 1 day ago
Share

The list of the included 94 studies has been attached in the Appendix 2.

* Akartuna, E. A., & Manning, M. G. (2026). An artificial intelligence-driven temporal network analysis of Myanmar’s cyber scam ecosystem. Asian Journal of Criminology, 21(1), 10. https://doi.org/10.1007/s11417-025-09474-0

Google Scholar

* Aria, M., & Cuccurullo, C. (2017). Bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959-975. https://doi.org/10.1016/j.joi.2017.08.007

Google Scholar

* Ayoola, V. B., Ugochukwu, U. N., Adeleke, I., Michael, C. I., Adewoye, M. B., & Adeyeye, Y. (2024). Generative AI-driven fraud detection in health care enhancing data loss prevention and cybersecurity analytics for real-time protection of patient records. International Journal of Scientific Research and Modern Technology, 3(11), 89-107. https://doi.org/10.38124/ijsrmt.v3i11.112

Google Scholar

* Bahnsen, A. C., Aouada, D.,Stojanovic, A., & Ottersten, B. (2016). Feature engineering strategies for credit card frauddetection. E xpert Systems with Applications, 51, 134-142. https://doi.org/10.1016/j.eswa.2015.12.030

* Bilal, D., He, J., & Liu, J. (2025). Guest editorial: AI in education: Transforming teaching and learning. Information and Learning Sciences, 126(1-2), 1-7. https://doi.org/10.1108/ils-01-2025-268

Google Scholar

* Braithwaite, J. (2021). Street-level meta-strategies: Evidence on restorative justice and responsive regulation. Annual Review of Law and Social Science, 17(17, 2021), 205-225. https://doi.org/10.1146/annurev-lawsocsci-111720-013149

Google Scholar

* Carcillo, F., Le Borgne, Y. A., Caelen, O., Kessaci, Y., Oblé, F., & Bontempi, G. (2019). Combining unsupervised and supervised learning in credit card fraud detection. Information Sciences, 557, 317-331. https://doi.org/10.1016/j.ins.2019.05.042

Google Scholar

* Chang, Y. C., & Aïmeur, E. (2024, December). Chat or trap? Detecting scams in messaging applications with large language models. In 2024 8th Cyber Security in Networking Conference (CSNet) (pp. 92-99). IEEE.

* Chen, A., Liu, L., & Zhu, T. (2024). Advancing the democratization of generative artificial intelligence in healthcare: A narrative review. Journal of Hospital Management and Health Policy, 8, 1-18. https://jhmhp.amegroups.org/article/view/8842

Google Scholar

* Cheng, M., Edwards, D., Darcy, S., & Redfern, K. (2018). A tri-method approach to a review of adventure tourism literature: Bibliometric analysis, content analysis, and a quantitative systematic literature review. Journal of Hospitality & Tourism Research, 42(6), 997-1020. https://doi.org/10.1177/1096348016640588

Google Scholar

* Corcoran, J., & Zahnow, R. (2022). Weather and crime: A systematic review of the empirical literature. Crime Science, 11, 16. https://doi.org/10.1186/s40163-022-00179-8

Google Scholar

* Dal Pozzolo, A., Caelen, O., Borgne, L., Waterschoot, Y. A., S., & Bontempi, G. (2014). Learned lessons in credit card fraud detection from a practitioner perspective. Expert Systems with Applications, 41(10), 4915-4928. https://doi.org/10.1016/j.eswa.2014.02.026

Google Scholar

* Donthu, N., Kumar, S., Mukherjee, D., Pandey, N., & Lim, W. M. (2021). How to conduct a bibliometric analysis: An overview and guidelines. Journal of Business Research, 133, 285-296. https://doi.org/10.1016/j.jbusres.2021.04.070

Google Scholar

* Ferrara, E. (2024). GenAI against humanity: Nefarious applications of generative artificial intelligence and large language models. Journal of Computational Social Science, 7(1), 549-569. https://doi.org/10.1007/s42001-024-00250-1

Google Scholar

* Fu, K., Cheng, D., Tu, Y., Zhang, L. (2016). CreditCard Fraud Detection Using Convolutional Neural Networks. In: Hirose, A., Ozawa, S., Doya, K.,Ikeda, K., Lee, M., Liu, D. (eds) Neural Information Processing (pp. 483-490). Cham: SpringerInternational Publishing. https://doi.org/10.1007/978-3-319-46675-0_53

* Gan, R., Zhou, L., Wang, L., Qin, K., & Lin, X. (2024). Defialigner: Leveraging symbolic analysis and large language models for inconsistency detection in decentralized finance. In 6th Conference on Advances in Financial Technologies (AFT 2024) (pp. 7 - 1). Schloss Dagstuhl-Leibniz-Zentrum für Informatik.

* Gehrmann, S., Huang, C., Teng, X., Yurovski, S., Bhorkar, A., Thomas, N., Doucette, J., Rosenberg, D., Dredze, M., & Rabinowitz, D. (2025). Understanding and mitigating risks of generative AI in financial services. In Proceedings of the 2025 ACM Conference on Fairness, Accountability, and Transparency. https://doi.org/10.1145/3715275.3732168

* Gregory, G., & Vito, L. (2024). ChatGPT: A Canary in the coal mine or a Parrot in the echo chamber? Detecting fraud with LLM: The case of FTX. Finance Research Letters, 70, 106349. https://doi.org/10.1016/j.frl.2024.106349

Google Scholar

* Gupta, M., Wasi, A., Verma, A., & Awasthi, S. (2021). Document clustering and topic classification using latent dirichlet allocation. In 2021 International Conference on Innovative Computing, Intelligent Communication and Smart Electrical Systems (ICSES), Chennai, India.

* Hasanov, I., Virtanen, S., Hakkala, A., & Isoaho, J. (2024). Application of large Language models in cybersecurity: A systematic literature review. IEEE Access : Practical Innovations, Open Solutions, 12, 176751-176778. https://doi.org/10.1109/ACCESS.2024.3505983

Google Scholar

* Heaslip, E. (2025). What’s the difference between traditional and generative AI? CO — by U.S. Chamber of Commerce. https://www.uschamber.com/co/run/technology/traditional-ai-vs-generative-ai

* Heiding, F., Schneier, B., Vishwanath, A., Bernstein, J., & Park, P. S. (2024). Devising and detecting phishing emails using large Language models. IEEE Access, 12, 42131-42146. https://doi.org/10.1109/ACCESS.2024.3375882

Google Scholar

* Hewett, J., & Leeke, M. (2022). Developing a GPT-3-based automated victim for advance fee fraud disruption. In 2022 IEEE 27th Pacific Rim International Symposium on Dependable Computing (PRDC) (pp. 205-211). IEEE.

* Irvin-Erickson, Y. (2024). Identity fraud victimization: A critical review of the literature of the past two decades. Crime Science, 13, 3. https://doi.org/10.1186/s40163-024-00202-0

Google Scholar

* Jiang, L., Wang, J., Wang, Y., Yang, H., Kong, L., Wu, Z., Shen, A., Huang, Z., & Jiang, Y. (2025). Bibliometric and LDA analysis of acute rejection in liver transplantation: Emerging trends, immunotherapy challenges, and the role of artificial intelligence. Cell Transplantation, 34, 09636897251325628. https://doi.org/10.1177/09636897251325628

Google Scholar

* Joshi, S. (2025). The transformative role of agentic GenAI in shaping workforce development and education in the US. Iconic Research and Engineering Journals, 8(8), 199-206. https://www.irejournals.com/paper-details/1707138

Google Scholar

* Joshi, R., Pandey, K., & Kumari, S. (2025). Generative AI: A transformative tool for mitigating risks for financial frauds. In Generative Artificial intelligence in finance: Large Language models, interfaces, and industry use cases to transform accounting and finance processes (pp. 125-147). https://doi.org/10.1002/9781394271078.ch7

* Khan, H., Sayyed, N., Sulthana, R., & Yaseen, S. (2025). Transforming fin-tech: The role of generative AI in Indian startups. In Generative AI for business analytics and strategic decision making in service industry (pp. 341-358). https://doi.org/10.4018/979-8-3693-7026-1.ch013

* Koletsis, P., Gemos, P. K., Chronis, C., Varlamis, I., Efthymiou, V., & Papadopoulos, G. T. (2024). Entity extraction from high-level corruption schemes via large language models. In 2024 IEEE International Conference on Big Data (BigData) (pp. 2753-2761). IEEE.

* Korkanti, S. (2024). Enhancing financial fraud detection using LLMs and advanced data analytics. In 2024 2nd International Conference on Self Sustainable Artificial Intelligence Systems (ICSSAS) (pp. 1328-1334). IEEE.

* Kruhlov, V., Bobos, O., Hnylianska, O., Rossikhin, V., & Kolomiiets, Y. (2024). The role of using artificial intelligence for improving the public service provision and fraud prevention. Pakistan Journal of Criminology, 16(2), 913-928.

Google Scholar

* Kumar, K., & Bhushan, B. (2023). Augmenting cybersecurity and fraud detection using artificial intelligence advancements. In 2023 International Conference on Computing, Communication, and Intelligent Systems (ICCCIS) (pp. 1207-1212). IEEE.

* Kurshan, E., Mehta, D., & Balch, T. (2024). AI versus ai in financial crimes & detection: GenAI crime waves to co-evolutionary AI. In Proceedings of the 5th ACM International Conference on AI in Finance (pp. 745-751).

* Lin, D. (2024). Key considerations to be applied while leveraging machine learning for financial statement fraud detection: A review. IEEE Access : Practical Innovations, Open Solutions, 12, 168213-168228. https://doi.org/10.1109/ACCESS.2024.3488832

Google Scholar

* Linnenluecke, M. K., Marrone, M., & Singh, A. K. (2019). Conducting systematic literature reviews and bibliometric analyses. Australian Journal of Management, 45(2), 175-194. https://doi.org/10.1177/0312896219877678

Google Scholar

* Liu, Y. (2024). Optimization of financial fraud detection algorithm by combining variational autoencoder with generative adversarial networks. In 2024 International Conference on Distributed Systems, Computer Networks and Cybersecurity (ICDSCNC) (pp. 1-7). IEEE. https://doi.org/10.1109/ICDSCNC62492.2024.10941350

* Liu, Y., & Gong, Z. (2025). Cycling topic graph learning for neural topic modeling. Knowledge-Based Systems, 310, 112905. https://doi.org/10.1016/j.knosys.2024.112905

Google Scholar

* Malik, K. M., Krishnamurthy, M., Alobaidi, M., Hussain, M., Alam, F., & Malik, G. (2020). Automated domain-specific healthcare knowledge graph curation framework: Subarachnoid hemorrhage as phenotype. Expert Systems with Applications, 145, 113120. https://doi.org/10.1016/j.eswa.2019.113120

Google Scholar

* Mallard, G., & Sun, J. (2024). International law, security, and sanctions: A decolonial perspective on the transnational legal order of sanctions. Annual Review of Law and Social Science, 20, 97-116. https://doi.org/10.1146/annurev-lawsocsci-042022-111630

Google Scholar

* Marella, B. C. C., & Kodi, D. (2025). Generative AI for fraud prevention: A new frontier in productivity and green innovation. In Advancing social equity through accessible green innovation (pp. 185-200). https://doi.org/10.4018/979-8-3693-9471-7.ch012

* Martineau, K. (2023). What is generative AI? IBM Research Blog. https://research.ibm.com/blog/what-is-generative-AI

* McKeown, S., & Mir, Z. M. (2021). Considerations for conducting systematic reviews: Evaluating the performance of different methods for de-duplicating references. Systematic Reviews, 10(1), 38. https://doi.org/10.1186/s13643-021-01583-y

Google Scholar

* Mhammad, A. F., Agarwal, R., Columbo, T., & Vigorito, J. (2023). Generative & responsible AI – LLMs use in differential governance.

* Mongkolrob, S., Intarasema, S., & Premchaiswadi, W. (2024). From data to decisions: Enhancing loan applications with process mining techniques. In 2024 22nd International Conference on ICT and Knowledge Engineering (ICT&KE) (pp. 1-8). IEEE.

* Mothukuri, V., Parizi, R. M., Massa, J. L., & Yazdinejad, A. (2024). An AI multi-model approach to defi project trust scoring and security. In 2024 IEEE International Conference on Blockchain (Blockchain) (pp. 19-28). IEEE.

* Naitali, A., Ridouani, M., Salahdine, F., & Kaabouch, N. (2023). Deepfake attacks: Generation, detection, datasets, challenges, and research directions. Computers, 12(10), 216. https://doi.org/10.3390/computers12100216

Google Scholar

* Olasiuk, H. K., Singh, S., & Ganushchak, S. (2023). T. Mapping research clusters of artificial intelligence for financial services using topic modelling: A machine learning insight. In 2023 global conference on information technologies and communications (GCITC), Bangalore, India.

* Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ, 372, n71. https://doi.org/10.1136/bmj.n71

* Palaiokrassas, G., Scherrers, S., Ofeidis, I., & Tassiulas, L. (2024). Leveraging machine learning for multichain defi fraud detection. In 2024 IEEE International Conference on Blockchain and Cryptocurrency (ICBC) (pp. 678-680). IEEE.

* Papasavva, A., Lundrigan, S., Lowther, E., Johnson, S., Mariconti, E., Markovska, A., & Tuptuk, N. (2025). Applications of AI-based models for online fraud detection and analysis. Crime Science, 14, 7. https://doi.org/10.1186/s40163-025-00248-8

Google Scholar

* Patel, H., Rehman, U., & Iqbal, F. (2024). Evaluating the efficacy of large language models in identifying phishing attempts. In 2024 16th International Conference on Human System Interaction (HSI) (pp. 1-7). IEEE.

* Pavlik, G. (2025). What is generative AI (GenAI)? How does it work? Oracle. https://www.oracle.com/artificial-intelligence/generative-ai/what-is-generative-ai/

* Petticrew, M., & Roberts, H. (2006). Systematic reviews in the social sciences: A practical guide. Blackwell.

* Rawal, R., Sachdeva, P., & Singhvi, A. S. (2025). The significance of generative AI in enhancing fraud detection and prevention within the banking industry. In Generative artificial intelligence in finance: Large language models, interfaces, and industry use cases to transform accounting and finance processes (pp. 159-173). https://doi.org/10.1002/9781394271078.ch9

* Rortais, A., Barrucci, F., Ercolano, V., Linge, J., Christodoulidou, A., Cravedi, J. P., Garcia-Matas, R., Saegerman, C., & Svečnjak, L. (2021). A topic model approach to identify and track emerging risks from beeswax adulteration in the media. Food Control, 119, 107435. https://doi.org/10.1016/j.foodcont.2020.107435

Google Scholar

* Secinaro, S., Dal Mas, F., Brescia, V., & Calandra, D. (2022). Blockchain in the accounting, auditing and accountability fields: A bibliometric and coding analysis. Accounting Auditing & Accountability Journal, 35(9), 168-203. https://doi.org/10.1108/AAAJ-10-2020-4987

Google Scholar

* Shafik, W. (2024). The role of generative artificial intelligence in E- commerce fraud detection and prevention. In Strategies for E-commerce data security: Cloud, Blockchain, AI, and Machine Learning (pp. 430-469). https://doi.org/10.4018/979-8-3693-6557-1.ch018

* Shibli, A. M., Pritom, M. M. A., & Gupta, M. (2024). Abusegpt: Abuse of generative AI chatbots to create smishing campaigns. In 2024 12th International Symposium on Digital Forensics and Security (ISDFS) (pp. 1-6). IEEE.

* Singh, C. (2025). Is generative AI (Artificial Intelligence) the next advent in the evolution of finance and navigating financial crime and regulation? Journal of Financial Crime, 32(3), 751-759. https://doi.org/10.1108/JFC-07-2024-0232

Google Scholar

* Siva, V., Gremyr, I., Bergquist, B., Garvare, R., Zobel, T., & Isaksson, R. (2016). The support of quality management to sustainable development: A literature review. Journal of Cleaner Production, 138, 148-157. https://doi.org/10.1016/j.jclepro.2016.01.020

Google Scholar

* Soltani, M., Kythreotis, A., & Roshanpoor, A. (2023). Two decades of financial statement fraud detection literature review; combination of bibliometric analysis and topic modeling approach. Journal of Financial Crime, 30(5), 1367-1388. https://doi.org/10.1108/JFC-09-2022-0227

Google Scholar

* Stănescu, G., & Oprea, S. V. (2025). Recent trends and insights in semantic web and ontology-driven knowledge representation across disciplines using topic modeling. Electronics, 14(7), 1313.

Google Scholar

* Suárez, E., Calvo-Mora, A., Roldán, J. L., & Periáñez-Cristóbal, R. (2017). Quantitative research on the EFQM excellence model: A systematic literature review (1991-2015). European Research on Management and Business Economics, 23(3), 147-156. https://doi.org/10.1016/j.iedeen.2017.05.002

Google Scholar

* Sun, J., Gu, S., & Su, R. (2026). AI-empowered responsive regulation for preventing future crimes: An empirical inquiry into the regulatory pyramid to combat future crimes in China and Southeast Asia. Asian Journal of Criminology, 21(1), 8.https://doi.org/10.1007/s11417-025-09477-x

Google Scholar

* Tiwari, M., Gepp, A., & Kumar, K. (2020). A review of money laundering literature: The state of research in key areas. Pacific Accounting Review, 32(2), 271-303. https://doi.org/10.1108/PAR-06-2019-0065

Google Scholar

* Tiwari, M., Rathore, V., & Jecklin, C. (2025a). Food crime: Deterrence of a potential money laundering typology through blockchain and generative artificial intelligence (Gen AI). European Journal on Criminal Policy and Research. https://doi.org/10.1007/s10610-025-09641-0

Google Scholar

* Tiwari, M., Zhou, Y., Childs, A., Chang, L. Y. C., & Ferrill, J. (2025b). Metaverse policing: A systematic literature review of challenges and recommendations. Computers in Human Behavior, 166, 108591. https://doi.org/10.1016/j.chb.2025.108591

Google Scholar

* Truong, L., & Samuel, B. (2025). Exposing the impact of GenAI for cybercrime: An investigation into the dark side. ArXiv. https://doi.org/10.48550/arXiv.2505.23733

* Verma, A., Sankhyayan, S., Jawanda, K., & Tandon, S. (2024). Generative artificial intelligence and cybersecurity risks: Issues and challenges. In International Conference on ICT for Sustainable Development (pp. 321-327). Singapore: Springer Nature Singapore.

* Weber, M., Domeniconi, G., Chen, J., Weidele, D., Bellei, C., Robinson, T., & Leiserson, C. (2019). Anti-money laundering in bitcoin: Experimenting with graph convolutional networks for financial forensics. ArXiv. https://doi.org/10.48550/arXiv.1908.02591

Google Scholar

* Yigit, Y., Buchanan, W. J., Tehrani, M. G., & Maglaras, L. (2024). Review of generative AI methods in cybersecurity. arXiv. https://arxiv.org/abs/2403.08701

* Zheng, X., Li, J., Lu, M., & Wang, F. Y. (2024b). New paradigm for economic and financial research with generative AI: Impact and perspective. IEEE Transactions on Computational Social Systems, 11(3), 3457-3467. https://doi.org/10.1109/TCSS.2023.3334306

Google Scholar

* Zheng, L., He, Z., & He, S. (2025). A topic model-based knowledge graph to detect product defects from social media data. Expert Systems with Applications, 268, 126313. https://doi.org/10.1016/j.eswa.2024.126313

Google Scholar

* Zhou, Y., Tiwari, M., Lee, C. S., & Dupont, B. (2026). Exploring future crimes: Technologies, digitalization, and criminal malleability. Asian Journal of Criminology, 21(1), 11. https://doi.org/10.1007/s11417-025-09471-3

Google Scholar

Read more on Springer

This news is powered by Springer Springer

Share this:

  • Share on X (Opens in new window) X
  • Share on Facebook (Opens in new window) Facebook

Like this:

Like Loading...

Related

Chainlink Targets Breakout, & Aave Dominates DeFi, While BlockDAG’s 3.5 Million+ X1 App Users Redefine Crypto Adoption in 2025
SEI Stablecoin Market Cap Surges $24 Million in Just 7 Days
Ozak AI Investors Eye Massive Gains Amid Low-Cap Opportunity
Pendle Unveils sPENDLE Token Upgrade to Strengthen DeFi Yield Infrastructure – Blockonomi
Emily Bao Unveils 2026 Strategic Roadmap at Solana Accelerate APAC: 24/7 Perpetual Trading Is Coming to the DEX

Sign Up For Daily Newsletter

Be keep up! Get the latest breaking news delivered straight to your inbox.
By signing up, you agree to our Terms of Use and acknowledge the data practices in our Privacy Policy. You may unsubscribe at any time.
Share This Article
Facebook Email Copy Link Print
Previous Article Aave advances toward ETF as Grayscale files SEC S-1
Next Article Grayscale Files to Convert AAVE Trust Into Exchange-Traded Fund – FinanceFeeds
© Market Alert News. All Rights Reserved.
Welcome Back!

Sign in to your account

Username or Email Address
Password

Prove your humanity


Lost your password?

%d